This document is split into 4 sections: Year 12 A level maths; Year 13 A level maths; Year 12 Further Maths; Year 13 Further Maths

Student Knowledge and Skills Tracker for Year 12 A level Mathematics

Term 1 Phase 1:	Check 1	Check 2	Final check
Pure1 Chapter 12-Differentiation. I can:			
Find the derivative, f'(x) or dy/dx — of a simple			
function			
Use the derivative to solve problems involving			
gradients, tangents and normals			
Identify increasing and decreasing functions			
Find the second order derivative			
Find stationary points of functions and determine			
their nature			
Sketch the gradient function of a given function			
Model real-life situations with differentiation			
Pure 1 Chapter 2 Quadratics. I can:			
Solve quadratic equations using factorisation, the			
quadratic formula and completing the squar			
Read and use f(x) notation when working with			
functions			
Sketch the graph and find the turning point of a			
quadratic function			
Find and interpret the discriminant of a quadratic			
expression			
Statistics and Mechanics 1. Chapter 1 Data			
collection I can:			

Understand 'population', 'sample' and 'census', and		
comment on the advantages and disadvantages of		
each		
Understand the advantages and disadvantages of		
simple random sampling, systematic sampling,		
stratified sampling, quota sampling and opportunity		
sampling		
Define qualitative, quantitative, discrete and		
continuous data, and understand grouped data		
Understand the large data set and how to collect		
data from it, identify types of data and calculate		
simple statistics		
Statistics and Mechanics 1. Chapter 2 Measures of		
spread and location. I can:		
Calculate measures of central tendency such as the		
mean, median and mode		
Calculate measures of location such as percentiles		
and deciles		
Calculate measures of spread such as range,		
interquartile range and interpercentile range		
Calculate variance and standard deviation	 	
Understand and use coding		

Term 1 Phase 2:	Check 1	Check 2	Final check
Pure 1 Chapter 3 Equations and inequalities. I can:			
Solve linear simultaneous equations using			
elimination or substitution			
Solve simultaneous equations: one linear and one			
quadratic			

Interpret algebraic solutions of equations		
graphically		
Solve linear inequalities		
Solve quadratic inequalities		Solve quadratic inequalities
Interpret inequalities graphically		
Represent linear and quadratic inequalities		
graphically		
Pure 1 Chapter 4 Graphs and transformations. I		
can:		
Sketch cubic graphs		
Sketch quartic graphs		
Sketch reciprocal graphs		
Use intersection points of graphs to solve problems		
Translate graphs		
Sketch graphs		
Transform graphs of unfamiliar functions		
Statistics and Mechanics 1 Chapter 3		
Representations of data. I can:		
Identify outliers in data sets		
Draw and interpret box plots		
Draw and interpret cumulative frequency diagrams		
Draw and interpret histograms		
Statistics and Mechanics 1 Chapter 4 Correlation		
and regression. I can:		
Draw and interpret scatter diagrams for bivariate		
data		
Interpret correlation and understand that it does		
not imply causation		
Interpret the coefficients of a regression line		
equation for bivariate data		

Understand when you can use a regression line to make predictions		
Statistics and Mechanics 1 Chapter 5 Probability. I		
can:		
Calculate probabilities for single events		
Draw and interpret Venn diagrams		
Understand mutually exclusive and independent events, and determine whether two events are independent		
Use and understand tree diagrams		

Term 2 Phase 1:	Check 1	Check 2	Final check
Pure 1 Chapter 5 Straight line graphs. I can:			
Understand the link between the equation of a line,			
and its gradient and intercept			
Find the equation of a line given (i) the gradient and			
one point on the line or (ii) two points on the line			
Find the point of intersection for a pair of straight			
lines			
Know and use the rules for parallel and			
perpendicular gradients			
Solve length and area problems on coordinate grids			Solve quadratic inequalities
Use straight line graphs to construct mathematical			
models			
Pure 1 Chapter 13 Integration. I can:			
Find the integral of a polynomial			
Find f(x), given f '(x) and a point on the curve			
Evaluate a definite integral			
Find the area bounded by a curve and the x-axis			

Find areas becomeded by surviva and straight lines	_	
Find areas bounded by curves and straight lines		
Pure 1 Chapter 1 Algebraic methods. I can:		
Multiply and divide integer powers		
Expand a single term over brackets and collect like		
terms		
Expand the product of two or three expressions		
Factorise linear, quadratic and simple cubic		
expressions		
Know and use the laws of indices		
Simplify and use the rules of surds		
Statistics and Mechanics 1 Chapter 6 Statistical		
distributions. I can:		
Understand and use simple discrete probability		
distributions including the discrete uniform		
distribution		
Understand the binomial distribution as a model		
and comment on appropriateness		
Calculate individual probabilities for the binomial		
distribution		
Calculate cumulative probabilities for the binomial		
distribution		
Statistics and Mechanics 1 Chapter 7 Hypothesis		
tests. I can:		
Understand the language and concept of hypothesis		
testing		
Understand that a sample is used to make an		
inference about a population		
Find critical values of a binomial distribution using		
tables		
Carry out a one-tailed test for the proportion of the		
binomial distribution and interpret the results		

Carry out a two-tailed test for the proportion of the		
pinomial distribution and interpret the results		

Term 2 Phase 2:	Check 1	Check 2	Final check
Pure 1 Chapter 7 Algebraic methods. I can:			
Cancel factors in algebraic fractions			
Divide a polynomial by a linear expression			
Use the factor theorem to factorise a cubic			
expression			
Construct mathematical proofs using algebra			
Use proof by exhaustion and disproof by counter-			
example			
Pure 1 Chapter 6 Circles. I can:			
Find the mid-point of a line segment			
Find the equation of the perpendicular bisector to a			
line segment			
Know how to find the equation of a circle			
Solve geometric problems involving straight lines			
and circles			
Use circle properties to solve problems on			
coordinate grids			
Find the angle in a semicircle and solve other			
problems involving circles and triangles			
Statistics and Mechanics 1 Chapter 8 Modelling in			
mechanics. I can:			
Understand how the concept of a mathematical			
model applies to mechanics			
Understand and be able to apply some of the			
common assumptions used in mechanical models			

Apply Newton's second law to vector forces and vector functions.	Know SI units for quantities and derived quantities		
Apply Newton's second law to vector forces and acceleration. Statistics and Mechanics 1 Chapter 9 Constant acceleration. I can: Jorderstand and interpret displacement-time graphs Jorderstand and interpret velocity-time graphs Derive the constant acceleration formulae and use them to solve problems Jose the constant acceleration formulae to solve problems involving vertical motion under gravity statistics and Mechanics 1 Chapter 10 Forces and Motion. I can: Draw force diagrams and calculate resultant forces Jorderstand and use Newton's first law Calculate resultant forces by adding vectors Jorderstand and use Newton's second law, F = ma Apply Newton's second law to vector forces and acceleration	used in mechanics		
Statistics and Mechanics 1 Chapter 9 Constant acceleration. I can: Understand and interpret displacement-time graphs Understand and interpret velocity-time graphs Understand acceleration formulae and use them to solve problems Use the constant acceleration formulae to solve problems involving vertical motion under gravity Understatistics and Mechanics 1 Chapter 10 Forces and Motion. I can: Understand and use Newton's first law Understand and use Newton's first law Understand and use Newton's second law, F = ma Apply Newton's second law to vector forces and acceleration	Know the difference between scalar and vector		
Acceleration. I can: Understand and interpret displacement-time graphs Understand and interpret velocity-time graphs Derive the constant acceleration formulae and use them to solve problems Use the constant acceleration formulae to solve problems involving vertical motion under gravity Statistics and Mechanics 1 Chapter 10 Forces and Motion. I can: Draw force diagrams and calculate resultant forces Understand and use Newton's first law Calculate resultant forces by adding vectors Understand and use Newton's second law, F = ma Apply Newton's second law to vector forces and acceleration	quantities		
Acceleration. I can: Understand and interpret displacement-time graphs Understand and interpret velocity-time graphs Derive the constant acceleration formulae and use them to solve problems Use the constant acceleration formulae to solve problems involving vertical motion under gravity Statistics and Mechanics 1 Chapter 10 Forces and Motion. I can: Draw force diagrams and calculate resultant forces Understand and use Newton's first law Calculate resultant forces by adding vectors Understand and use Newton's second law, F = ma Apply Newton's second law to vector forces and acceleration			
Understand and interpret displacement-time graphs Understand and interpret velocity-time graphs Derive the constant acceleration formulae and use them to solve problems Use the constant acceleration formulae to solve problems Use the constant acceleration formulae to solve problems involving vertical motion under gravity Statistics and Mechanics 1 Chapter 10 Forces and Motion. I can: Draw force diagrams and calculate resultant forces Understand and use Newton's first law Calculate resultant forces by adding vectors Understand and use Newton's second law, F = ma Apply Newton's second law to vector forces and acceleration	•		
graphs Understand and interpret velocity-time graphs Derive the constant acceleration formulae and use them to solve problems Use the constant acceleration formulae to solve problems involving vertical motion under gravity Statistics and Mechanics 1 Chapter 10 Forces and Motion. I can: Draw force diagrams and calculate resultant forces Understand and use Newton's first law Calculate resultant forces by adding vectors Understand and use Newton's second law, F = ma Apply Newton's second law to vector forces and acceleration	acceleration. I can:		
Understand and interpret velocity-time graphs Derive the constant acceleration formulae and use them to solve problems Use the constant acceleration formulae to solve problems involving vertical motion under gravity Statistics and Mechanics 1 Chapter 10 Forces and Motion. I can: Draw force diagrams and calculate resultant forces Understand and use Newton's first law Calculate resultant forces by adding vectors Understand and use Newton's second law, F = ma Apply Newton's second law to vector forces and acceleration	Understand and interpret displacement-time		
Derive the constant acceleration formulae and use them to solve problems Use the constant acceleration formulae to solve problems involving vertical motion under gravity Statistics and Mechanics 1 Chapter 10 Forces and Motion. I can: Draw force diagrams and calculate resultant forces Understand and use Newton's first law Calculate resultant forces by adding vectors Understand and use Newton's second law, F = ma Apply Newton's second law to vector forces and acceleration	graphs		
them to solve problems Use the constant acceleration formulae to solve problems involving vertical motion under gravity Statistics and Mechanics 1 Chapter 10 Forces and Motion. I can: Draw force diagrams and calculate resultant forces Understand and use Newton's first law Calculate resultant forces by adding vectors Understand and use Newton's second law, F = ma Apply Newton's second law to vector forces and acceleration	Understand and interpret velocity-time graphs		
Use the constant acceleration formulae to solve problems involving vertical motion under gravity Statistics and Mechanics 1 Chapter 10 Forces and Motion. I can: Draw force diagrams and calculate resultant forces Understand and use Newton's first law Calculate resultant forces by adding vectors Understand and use Newton's second law, F = ma Apply Newton's second law to vector forces and acceleration	Derive the constant acceleration formulae and use		
Statistics and Mechanics 1 Chapter 10 Forces and Motion. I can: Draw force diagrams and calculate resultant forces Understand and use Newton's first law Calculate resultant forces by adding vectors Understand and use Newton's second law, F = ma Apply Newton's second law to vector forces and acceleration	them to solve problems		
Statistics and Mechanics 1 Chapter 10 Forces and Motion. I can: Draw force diagrams and calculate resultant forces Understand and use Newton's first law Calculate resultant forces by adding vectors Understand and use Newton's second law, F = ma Apply Newton's second law to vector forces and acceleration	Use the constant acceleration formulae to solve		
Motion. I can: Draw force diagrams and calculate resultant forces Understand and use Newton's first law Calculate resultant forces by adding vectors Understand and use Newton's second law, F = ma Apply Newton's second law to vector forces and acceleration	problems involving vertical motion under gravity		
Draw force diagrams and calculate resultant forces Understand and use Newton's first law Calculate resultant forces by adding vectors Understand and use Newton's second law, F = ma Apply Newton's second law to vector forces and acceleration	Statistics and Mechanics 1 Chapter 10 Forces and		
Understand and use Newton's first law Calculate resultant forces by adding vectors Understand and use Newton's second law, F = ma Apply Newton's second law to vector forces and acceleration	Motion. I can:		
Calculate resultant forces by adding vectors Understand and use Newton's second law, F = ma Apply Newton's second law to vector forces and acceleration	Draw force diagrams and calculate resultant forces		
Understand and use Newton's second law, F = ma Apply Newton's second law to vector forces and acceleration	Understand and use Newton's first law		
Apply Newton's second law to vector forces and acceleration	Calculate resultant forces by adding vectors		
acceleration	Understand and use Newton's second law, F = ma		
	Apply Newton's second law to vector forces and		
	acceleration		
Jnderstand and use Newton's third law	Understand and use Newton's third law		
Solve problems involving connected particles	Solve problems involving connected particles		

Term 3 Phase 1:	Check 1	Check 2	Final check
Pure 1 Chapter 9: Trigonometric ratios. I can:			
Use the cosine rule to find a missing side or angle			
Use the sine rule to find a missing side or angle			

Find the area of a triangle using an appropriate		
formula		
Solve problems involving triangles		
Sketch the graphs of the sine, cosine and tangent		Solve quadratic inequalities
functions		
Sketch simple transformations of these graphs		
Pure 1 Chapter 10: Trigonometric identities and		
equations. I can:		
Know the exact trigonometric ratios for 30°, 45° and		
60°		
Know and use the relationships tanx = sinx/cosx		
and sin ² x+ cos ² x=1		
Solve simple trigonometric equations of the form		
sinx = k, cosx =k and tanx = k		
Solve more complicated trigonometric equations of		
the forms $sin(nx)=k$ and $sin(0\pm a)=k$ and		
equivalent equations involving cos and tan		
Solve trigonometric equations that produce		
quadratics		
Pure 1 Chapter 8: The binomial expansion. I can:		
Use Pascal's triangle to identify binomial		
coefficients and use them to expand simple		
binomial expressions		
Use combinations and factorial notation		
Use the binomial expansion to expand brackets		
Find individual coefficients in a binomial expansion		
Make approximations using the binomial expansion		
Pure 1 Chapter 11: Vectors. I can:		
Use vectors in two dimensions		
Use column vectors and carry out arithmetic	 	
operations on vectors		

Calculate the magnitude and direction of a vector		
Understand and use position vectors		
Use vectors to solve geometric problems		
Understand vector magnitude and use vectors in speed and distance calculations		
Use vectors to solve problems in context		
Statistics and Mechanics 1 Chapter 11 Variable acceleration. I can:		
Understand that displacement, velocity and acceleration may be given as functions of time Use differentiation to solve kinematics problems		
Use calculus to solve problems involving maxima and minima		
Use integration to solve kinematics problems	·	
Use calculus to derive constant acceleration formulae		

Term 3 Phase 2:	Check 1	Check 2	Final check
Pure 1 Chapter 14: Exponentials and logarithms. I			
can:			
Sketch graphs of the form $y = a^x$, $y = e^x$ and transformations of these graphs			
Differentiate e ^{kx} and understand why this result is important			
Use and interpret models that use exponential functions			
Recognise the relationship between exponents and logarithms			
Recall and apply the laws of logarithms			
Solve equations of the form a ^x = b			

Describe and use the natural logarithm function		
Use logarithms to estimate the values of constants		
in non-linear		
Pure 2 Chapter 1: Algebraic methods. I can:		
Multiply and divide two or more algebraic fractions		
Add or subtract two or more algebraic fractions		
Convert an expression with linear factors in the denominator into partial fractions		
I Convert an expression with repeated linear factors in the denominator into partial fractions		
Divide algebraic expressions		
Convert an improper fraction into partial fraction form		
Pure 2 Chapter 2: Functions and graphs. I can:		
Understand and use the modulus function		
Understand mappings and functions, and use		
domain and range		
Combine two or more functions to make a		
composite function		
Know how to find the inverse of a function		
graphically and algebraically		
Sketch the graphs of the modulus functions y = and y = f(lxl)		
Apply a combination of two (or more)		
transformations to the same curve		
Transform the modulus function		
Pure 2 Chapter 3: Sequences and series. I can:		
Find the nth term of an arithmetic sequence		
Prove and use the formula for the sum of the first n terms of an arithmetic series		

Find the nth term of a geometric sequence		
Prove and use the formula for the sum of a finite		
geometric series		
Prove and use the formula for the sum to infinity of		
a convergent geometric series		
Use sigma notation to describe series		
Generate sequences from recurrence relations		
Model real-life situations with sequences and series		

Student Knowledge and Skills Tracker for Year 13 A' Level Mathematics

Term 1 Phase 1:	Check 1	Check 2	Final check
Pure 2 Chapter 4 Binomial expansion (2). I can:			
Expand $(1 + x)^n$ for any rational constant n and determine the range of values of x for which the			
expansion is valid			
Expand (a + bx) for any rational constant n and			
determine the range of values of x for which the			
expansion is valid			
Use partial fractions to expand fractional			
expressions			
Pure 2 Chapter 5 Radians. I can:			
Convert between degrees and radians and apply this			
to trigonometric graphs and their transformations			
State exact values of angles measured in radians			
Find an arc length using radians			
Find areas of sectors and segments using radians			
Solve trigonometric equations in radians			
Use approximate trigonometric values when the			
angle is small			
Pure 2 Chapter 6 Trigonometric functions. I can:			
Understand the graphs of secant, cosecant and			
cotangent and their domain and range			
Simplify expressions, prove simple identities and			
solve equations involving secant, cosecant and			
cotangent			
Prove and use $sec^2x = I + tan^2x$ and $cosec^2x = 1 + cot^2x$			

Understand and use inverse trigonometric functions and their domain and ranges		
Pure 2 Chapter 9 Differentiation. I can:		
Differentiate trigonometric functions		
Differentiate exponentials and logarithms		
Differentiate functions using the chain, product and quotient rules		
Differentiate parametric equations		
Differentiate functions which are defined implicitly		
Use the second derivative to describe the behaviour of a function		
Solve problems involving connected rates of change and construct simple differential equations		

Term 1 Phase 2:	Check 1	Check 2	Final check
Pure 1 Chapter 7 Trigonometry and modelling. I			
can:			
Prove and use the addition formulae			
Understand and use the double-angle formulae			
solve trigonometric equations using the double- angle and addition formulae			
Write expressions of the form a $\cos x \pm b \sin x$ in the			
forms			
R $cos(x \pm a)$ or R $sin(x \pm Q)$			
Use trigonometric functions to model real-life			Solve quadratic inequalities
situations			
Pure 2 Chapter 8 Parametric equations I can:			
Convert parametric equations into Cartesian form			
by substitution			
Convert parametric equations into Cartesian form			
using trigonometric identities			

Term 2 Phase 1:	Check 1	Check 2	Final check
Pure 2 Chapter 12 Vectors. I can:			
Understand 3D Cartesian coordinates			
Use vectors in three dimensions			
Use vectors to solve geometric problems			
Model 3D motion in mechanics with vectors			
Statistics and Mechanics 2 Chapter 1 Regression,			Solve quadratic inequalities
correlation and hypothesis testing. I can:			
Understand exponential models in bivariate data			
Use a change of variable to estimate coefficients in			
an exponential model			
Understand and calculate the product moment			
correlation coefficient			
Carry out a hypothesis test for zero correlation			
Statistics and Mechanics 2 Chapter 2 Conditional			
probability. I can:			
Understand set notation in probability			
Understand conditional probability			
Solve conditional probability problems using two-			
way tables and Venn diagrams			
Use probability formulae to solve problems			
Solve conditional probability problems using tree			
diagrams			
Statistics and Mechanics 2 Chapter 4 Moments. I			
can:			
Calculate the turning effect of a force applied to a			
rigid body			
Calculate the resultant moment of a set of forces			
acting on a rigid body			
Solve problems involving uniform rods in			
equilibrium			

Solve problems involving non-uniform rods		
Solve problems involving rods on the point of		
tilting		

Term 2 Phase 2:	Check 1	Check 2	Final check
Statistics and Mechanics 2 Chapter 3 The Normal			
distribution. I can:			
Understand the normal distribution and the			
characteristics of a Normal distribution curve			
Find percentage points on a standard normal curve			
Find unknown means and/or standard deviations			
for a normal distribution			
Approximate a binomial distribution using a normal			
distribution			
Select appropriate distributions and solve real-life			
problems in context			
Carry out a hypothesis test for the mean of a			
normal distribution			
Statistics and Mechanics 2 Chapter 5 Forces and			
friction. I can:			
Resolve forces into components			
Use the triangle law to find a resultant force			
Solve problems involving smooth or rough inclined			
planes			
Understand friction and the coefficient of friction			
Statistics and Mechanics 2 Chapter 6 Projectiles. I			
can:			
Model motion under gravity for an object projected			
horizontally			
Resolve velocity into components			

Solve problems involving particles projected at an angle		
Derive the formulae for time of flight, range and		
greatest height, and the equation of the path of a		
projectile		
Statistics and Mechanics 2 Chapter 7 Application of		
forces. I can:		
Find an unknown force when a system is in		
equilibrium		
Solve statics problems involving weight, tension and		
pulleys		
Understand and solve problems involving limiting		
equilibrium		
Solve problems involving motion on rough or		
smooth inclined planes		
Solve problems involving connected particles that		
require the resolution of forces		
Statistics and Mechanics 2 Chapter 8 Further		
kinematics. I can:		
Work with vectors for displacement, velocity and		
acceleration when using the vector equations of		
motion		
Use calculus with harder functions of time involving		
variable acceleration		
Differentiate and integrate vectors with respect to		
time		
	1	

Term 3 Phase 1 &2: Revision and Examination

Student Knowledge and Skills Tracker for Year 12 – Further Mathematics

Term 1 Phase 1:	Check 1	Check 2	Final check
Pure Core Maths 1 Chapter 1: Complex Numbers.			
I can:			
Understand and use the definitions of imaginary and			
complex numbers			
Add and subtract complex numbers			
Multiply complex numbers			
Understand the definition of a complex conjugate			
Divide complex numbers			
Solve quadratic equations that have complex roots			
Solve cubic or quartic equations that have			
complex roots			
Pure Core Maths 1 Chapter 2: Argand Diagrams.			
I can:			
Show complex numbers on an Argand diagram			
Find the modulus and argument of a complex			
number			
Write a complex number in modulus-argument			
form			
Represent loci on an Argand diagram			
Represent regions on an Argand diagram			
Pure Core Maths 1 Chapter 6: Matrices.			
I can:			
Understand the concept of a matrix			
Define the zero and identity matrices			
Add and subtract matrices			

Multiply a matrix by a scalar			
Multiply matrices			
Calculate the determinant of a matrix			
Find the inverse of a matrix			
Use matrices to solve systems of equations			
Interpret simultaneous equations geometrically			
Further Mechanics 1 Chapter 1: Momentum and Impulse. I can:			
Calculate the momentum of a particle and the impulse of a force			
Solve problems involving collisions using the principle of conservation of momentum			
Use the impulse-momentum principle and the principle of conservation of momentum in vector form			
Further Mechanics 1 Chapter 1: Work Energy and Power. I can:			
Calculate the work done by a force when its point of application moves			
Calculate the kinetic energy of a moving particle and the potential energy of a particle			
Use the principle of conservation of mechanical			
energy and the work-energy principle			
Calculate the power developed by an engine			
Term 1 Phase 2:	Check 1	Check 2	Final check

Term 1 Phase 2:	Check 1	Check 2	Final check
Pure Core Maths 1 Chapter7: Linear			
Transformations.			
I can:			

Understand the properties of linear transformations		
and represent them using matrices		
Perform reflections and rotations using matrices		
Carry out enlargements and stretches using		
matrices		
Find the coordinates of invariant points and the		
equations of invariant lines		
Carry out successive transformations using matrix		Solve quadratic inequalities
products		
Understand linear transformations in three		
dimensions		
Use inverse matrices to reverse linear		
transformations		
Pure Core Maths 1 Chapter 8: Proof by Induction.		
I can:		
Understand the principle of proof by mathematical		
induction and prove results about sums of series		
Prove results about divisibility using induction		
Prove results about matrices using induction		
Pure Core Maths 1 Chapter 3: Series. I can:		
Use standard summation results		
Evaluate and simplify series of the form $\Sigma f(r)$, where		
f(r) is linear, quadratic or cubic		
Pure Core Maths 1 Chapter 9: Vectors. I can:		
Understand and use the vector and Cartesian forms		
of the equation of a straight line in three		
dimensions		
Understand and use the vector and Cartesian forms		
of the equation of a plane		
Calculate the scalar product for two 3D vectors		

Calculate the angle between two vectors, two lines,	
a line and a plane, or two planes	
Understand and use the scalar product form of the	
equation of a plane	
Determine whether two lines meet and determine	
the point of intersection	
Calculate the perpendicular distance between: two	
lines, a point and a line, or a point and a plane	
Further Mechanics 1 Chapter 3: Elastic strings and	
springs. I can:	
Use Hooke's law to solve equilibrium problems	
involving elastic strings or springs	
Use Hooke's law to solve dynamics problems	
involving elastic strings or springs	
Find the energy stored in an elastic string or spring	
Solve problems involving elastic energy using the	
principle of conservation of mechanical energy and	
the work—energy principle	
Further Mechanics 1 Chapter 4: Elastic Collisions in	
one dimension. I can:	
Solve problems involving the direct impact of two	
particles by using the principle of conservation of	
momentum and Newton's law of restitution	
Apply Newton's law of restitution to problems	
involving the direct collision of a particle with a	
smooth plane surface	
Find the change in energy due to an impact or the	
application of an impulse	
Solve problems involving successive direct impacts	

Term 2 Phase 1:	Check 1	Check 2	Final check
TETHI 2 FHase 1.	CHECK I	CHECK Z	Filial Clieck

Dura Cara Matha 1 Chapter F. Volumes of		
Pure Core Maths 1 Chapter 5: Volumes of		
Revolution. I can:		
Find the volume of revolution when a curve is		
rotated around the x-axis		
Find the volume of revolution when a curve is		
rotated around the y-axis		
Find more complicated volumes of revolution		
Model real-life objects using volumes of revolution		
Further Mechanics 1 Chapter 5: Elastic Collisions in		
two dimensions. I can:		
Solve problems involving the oblique impact of a		
smooth sphere with a fixed surface		
Solve problems involving the oblique impact of two		
smooth		
spheres		
Solve problems involving successive oblique impacts		
of a sphere with smooth plane surfaces		
Further Statistics 1 Chapter 1: Discrete Random		
Variables. I can:		
Find the expected value of a discrete random		
variable X		
Find the expected value of X ²		
Find the variance of a discrete random variable		
Use the expected value and variance of a function		
of X		
Solve problems involving random variables		
Further Statistics 1 Chapter 2: The Poisson		
distribution. I can:		
Use the Poisson distribution to model real-world		
situations		
<u>, </u>	ı	

Use the additive property of the Poisson		
distribution		
Understand and use the mean and variance of the		
Poisson distribution		
Understand and use the mean and variance of the		
binomial distribution		
Use the Poisson distribution as an approximation to		
the binomial distribution		

Term 2 Phase 2:	Check 1	Check 2	Final check
Pure Core Maths 1 Chapter 4: Roots of			Solve quadratic inequalities
polynomials. I can:			
Derive and use the relationships between the roots			
of a quadratic equation			
Derive and use the relationships between the roots			
of a cubic equation			
Derive and use the relationships between the roots			
of a quartic equation			
Evaluate expressions relating to the roots of			
polynomials			
Find the equation of a polynomial whose roots are a			
linear transformation of the roots of a given			
polynomial			
Further Statistics 1 Chapter 3: Geometric and			
Negative Binomial distributions. I can:			
Understand and use the geometric distribution			
Calculate and use the mean and variance of			
the geometric distribution			
Understand and use the negative binomial			
distribution			

Calculate and use the mean and variance of the			
negative binomial distribution			
Further Statistics 1 Chapter 4: Hypothesis testing. I			
can:			
Use hypothesis tests to test for the mean λ of a			
Poisson distribution			
Find critical regions of a Poisson distribution			
using tables			
Use hypothesis tests to test for the parameter p in a			
geometric distribution			
Find critical regions of a geometric distribution			
Term 3 Phase 1:	Check 1	Check 2	Final check
Further Statistics 1 Chapter 6: Chi Squared tests: I			
can:			
Form hypotheses about how well a distribution fits			
as a model for and observed frequency distribution			
Measure the goodness of fit of a model to observed			
data			
Understand the degrees of freedom and use the			
chi-squared family of distributions			
Be able to test a hypothesis for goodness of fit (for			
discrete distributions) and by using contingency			
tables			
Further Statistics 1 Chapter 7: Probability			Solve quadratic inequalities
generating functions: I can:			
Understand and use probability generating			
functions			
Derive and use probability generating functions for			
standard distributions			
Derive the formulae for the mean and variance of a			
distribution using probability generating functions			

Use probability generating functions to find the		
mean and variance of a distribution		
Know the probability generating function of the sum		
of independent random variables		

Term 3 Phase 2:	Check 1	Check 2	Final check
Pure Core Maths 2 Chapter 1: Complex			
numbers. I can:			
Express a complex number in exponential form			
Multiply and divide complex numbers in			
exponential form			
Understand de Moivre's theorem			
Use de Moivre's theorem to derive trigonometric			
identities			
Use de Moivre's theorem to find sums of series			
Further Statistics 1 Chapter 5: The Central limit			
theorem(and the Normal distribution) I can:			
Find probabilities using the Normal distribution			
Solve problems using the inverse Normal			
distribution			
Understand the standard Normal distribution			
Use the standard Normal distribution to find the			
unknown mean and standard deviation			

Student Knowledge and Skills Tracker for Year 13 A' Level Further Mathematics

Term 1 Phase 1:	Check 1	Check 2	Final check
Pure Core Maths 2 Chapter 1: Complex numbers. I			
can:			
Know how to solve completely equations of the form			
z ⁿ -a - ib = 0, giving special attention to cases where a			
= 1 and b = 0			
Use complex roots of unity to solve geometric			
problems			
Pure Core Maths 2 Chapter 2: Series. I can:			
Understand and use the method of differences to			
sum finite series			
Find and use higher derivatives of functions			
Know how to express functions as an infinite series			
in ascending powers using Maclaurin series			
expansion			
Be able to find the series expansions of compound			
functions			
Pure Core Maths 2 Chapter 3: Methods in calculus. I			
can:			
Evaluate improper integrals			
Understand and evaluate the mean value of a			
function			
Integrate rational functions using trigonometric			
substitutions			
Integrate using partial fractions			
Further Statistics 1 Chapter 5: The Central limit			
theorem(and the Normal distribution) I can:			

Understand and apply the central limit theorem to		
approximate the random variable X bar		
Apply the central limit theorem to other		
distributions and solve problems		
Further Statistics 1 Chapter 8: Quality of statistical		
tests. I can:		
Understand type I and type II errors		
Find type I and type II errors using the normal		
distribution		
Calculate the size and power of a test		
Draw a graph of the power function for a test		

Term 1 Phase 2:	Check 1	Check 2	Final check
Pure Core Maths 2 Chapter 4: Volumes of			
revolution. I can:			
Find volumes of revolution around the x-axis			
Find volumes of revolution around the y-axis			
Find volumes of revolution for curves defined parametrically			
Model real-life applications of volumes of revolution			
Pure Core Maths 2 Chapter 5: Polar coordinates. I			
can:			
Understand and use polar coordinates			
Convert between polar and Cartesian coordinates			
Sketch curves with r given as a function of θ			
Find the area enclosed by a polar curve			
Find tangents parallel to, or at right angles to, the			
initial line			
Pure Core Maths 2 Chapter 6: Hyperbolic functions.			
I can:			

Understand the definitions of hyperbolic functions		
Sketch the graphs of hyperbolic functions		
Understand and use the inverse hyperbolic functions Prove identities and solve equations using		
hyperbolic functions		
Differentiate and integrate hyperbolic functions		

Term 2 Phase 1:	Check 1	Check 2	Final check
Pure Core Maths 2 Chapter 7: Methods in			
differential equations. I can:			
Solve first order differential equations using an			
integrating factor			
Solve second-order homogeneous differential			
equations using the auxiliary equation			
Solve second-order homogenous differential			
equations using the complimentary function and			
particular integral			
Find particular solutions to differential equations			
using given boundary conditions			

Term 2 Phase 2:	Check 1	Check 2	Final check
Pure Core Maths 2 Chapter 7: Modelling with			
differential equations. I can:			
Model real-life situations with first-order differential			
equations			
Use differential equations to model simple			
harmonic motion			
Model damped and forced oscillations using			
differential equations			

Model real-life situations using coupled first-order differential equations		
Term 3 Phase 1 &2: Revision and Examinations		